ГОУ ВПО Российско-Армянский (Славянский) университет

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

Наименование дисциплины: Б1.О.07 Физика 2

Автор (ы) <u>Багунц Гагик Михайлович, к.ф.-м.н., доцент</u> Ф.И.О, ученое звание (при наличии), ученая степень (при наличии)

Направление подготовки: 11.03.04 Электроника и наноэлектроника Наименование образовательной программы: Квантовая информатика

Согласовано:

Заведующий Кафедрой общей физики и квантовых наноструктур

Айрапетян Д.Б.

(подписк)

1. АННОТАЦИЯ

1.1. Краткое описание содержания данной дисциплины;

Данный курс посвящен изучению основных законов и принципов, описывающих электрические и магнитные явления. Эта дисциплина закладывает прочную основу для понимания электромагнетизма и его роли в науке и технике, а также способствует развитию инженерного и научного мышления.

1.2. Трудоемкость в академических кредитах и часах, формы итогового контроля (экзамен/зачет);

8 з.е. (288ч.), экзамен

1.3. Взаимосвязь дисциплины с другими дисциплинами учебного плана специальности (направления)

Физика 1, Физика 3, Физика 4, Теоретическая механика, Математический анализ, Аналитическая геометрия и линейная алгебра.

1.4. Результаты освоения программы дисциплины:

Код компетенции (в соответствии рабочим с учебным планом)	Наименование компетенции (в соответствии рабочим с учебным планом)	Код индикатора достижения компетенций (в соответствии рабочим с учебным планом)	Наименование индикатора достижений компетенций(в соответствии рабочим с учебным планом)
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.1 ОПК-1.2 ОПК-1.3	Знает фундаментальные законы природы и основные физические и математические законы Умеет применять физические законы и математические методы для решения задач теоретического и прикладного характера Владеет навыками использования знаний физики и математики при решении практических задач
	Способен самостоятельно проводить экспериментальные исследования и	ОПК-2.1	Знает основные методы и средства проведения

ОПК-2	использовать основные приемы		экспериментальных
	обработки и представления полученных данных		исследований, системы стандартизации и сертификации
		ОПК-2.2	Умеет выбирать способы и средства измерений и проводить
		OHW 2.2	экспериментальные исследования Владеет способами
		ОПК-2.3	Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений
ОПК-3	Способен применять методы поиска, хранения, обработки, анализа и представления в требуемом формате информации из различных источников и баз данных, соблюдая при этом основные требования информационной безопасности	ОПК-3.1	Знает, как использовать информационно-коммуника- ционные технологии при поиске необходимой информации и современные принципы поиска, хранения, обработки, анализа и представления в требуемом формате информации
		ОПК-3.2	Умеет решать задачи обработки данных с помощью современных средств автоматизации
		ОПК-3.3	Владеет навыками обеспечения информационной безопасности
ПК-3	Готов осваивать принципы планирования и методы автоматизации эксперимента на основе	ПК-3.1	Знает способы организации и проведения экспериментальных исследований
	информационно-измерительных комплексов как средства повышения точности и снижения затрат на его	ПК-3.2	Умеет самостоятельно проводить экспериментальные исследования
	проведение, овладевать навыками измерений в реальном времени	ПК-3.3	Владеет навыками проведения исследования с применением современных средств и методов
ПК-4	Способен к организации и проведению экспериментальных исследований с применением современных средств и	ПК-4.1	Знает способы организации и проведения экспериментальных исследований
	методов	ПК-4.2	Умеет самостоятельно проводить экспериментальные исследования
		ПК-4.3	Владеет навыками проведения исследования с

	применением	современных
	средств и метод	ДОВ

2. УЧЕБНАЯ ПРОГРАММА

2.1. Цели и задачи дисциплины

Цель — показ фундаментальных связей между электрическими и магнитными явлениями. Кроме освоения основных понятий необходимо научить студентов количественно решать конкретные задачи в рамках принятых приближений. Еще одним важным требованием является необходимость научить студентов основам постановки и проведения физического эксперимента с последующим анализом и оценкой полученных результатов, также целью является изучение основных закономерностей процессов и оценка порядков изучаемых величин, точности и достоверности полученных результатов Формирование у студентов базовых знаний о законах механики и молекулярной физики для понимания физических процессов в природе и технике.

Задачи:

- 1. Изучение фундаментальных законов электростатики, магнитостатики и электродинамики (законы Кулона, Гаусса, Ампера, Фарадея, уравнения Максвелла).
- 2. Формирование навыков анализа электрических и магнитных полей в различных средах и условиях.
- 3. Освоение методов расчета электрических цепей постоянного и переменного тока.
- 4. Развитие практических умений в измерении электрических и магнитных величин.
- 5. Понимание принципов работы электромагнитных устройств, таких как трансформаторы, генераторы, конденсаторы и индуктивности.
- 6. Изучение распространения электромагнитных волн и их применения в связи, радиотехнике и других сферах.
- 7. Развитие логического и математического мышления через решение задач и моделирование физических явлений.
- **2.2.** Трудоемкость дисциплины и виды учебной работы (в академических часах и зачетных единицах) (удалить строки, которые не будут применены в рамках дисциплины)

	_	I _
Виды учебной работы	Всего, в	Распределение

	акад.	по семестрам	
	часах	1	
		сем	
1	2	3	
1. Общая трудоемкость изучения	288	288	
дисциплины по семестрам, в т. ч.:	200	400	
1.1. Аудиторные занятия, в т. ч.:	96	96	
1.1.1.Лекции	32	32	
1.1.2.Практические занятия, в т. ч.	32	32	
1.1.3.Лабораторные работы	32	32	
1.2. Самостоятельная работа, в т. ч.:	156	156	
1.3. Консультации			
Итоговый контроль (Экзамен, Зачет, диф. зачет - указать)	Экзамен	36	

2.3. Содержание дисциплины

2.3.1. Тематический план и трудоемкость аудиторных занятий (модули, разделы дисциплины и виды занятий) по рабочему учебному плану

Разделы и темы дисциплины		Лекции (ак. часов)	Практ. Занятия (ак. часов)	Лабор. (ак. часов)	
1	2=3+4+5 +6+7	3	4	6	
Электростатика					
Введение					
Раздел 1. Электростатическое поле в вакууме	14	5	4	5	
Тема 1. Напряженность и потенциал поля. Поток вектора. Теорема Гаусса.		3			
Тема 2. Потенциал электростатического поля. Циркуляция вектора E.		2			
Раздел 2. Электростатическое поле в веществе	16	5	6	5	
Тема 3. Свободные и связанные заряды. Поле диполя.		3			
Тема 4. Теорема Гаусса в диэлектриках, электрическое смещение.		2			
Раздел 3. Проводники в электрическом поле	14	5	4	5	
Тема 5. Поле внутри проводника. Электроемкость. Конденсаторы. Емкость плоского конденсатора.		3			
Тема 6. Энергия системы зарядов. Энергия электрического поля.		2			

Постоянный ток. Магнетизм. Переменные поля				
Раздел 4. Постоянный ток. Магнитное поле в вакууме.	16	5	6	5
Тема 7. Законы Ома и Джоуля-Ленца в интегральной и локальной формах.		3		
Тема 8. Закон Био - Савара, его применение к расчету магнитного поля токов.		2		
Раздел 5. Магнитное поле в веществе	14	4	6	4
Тема 9. Намагничивание вещества, магнитная восприимчивость.		2		
Тема 10. Условия для векторов В и H на границе двух магнетиков.		2		
Раздел 6. Электромагнитная индукция	8	4		4
Тема 11. Закон Фарадея для ЭДС индукции. Вихревое электрическое ноле.		2		
Тема 12. Колебательный контур. Вынужденные колебания и затухающие колебания.		2		
Раздел 7. Уравнения Максвелла.	14	4	6	4
Тема 13. Ток смещения. Полная система уравнений электродинамики в интегральной форме.		2		
Тема 14. Вывод волнового уравнения для полей Е и Н. Закон сохранения энергии для полей.		2		
ИТОГО	102	32	32	32

2.3.2. Краткое содержание разделов дисциплины в виде тематического плана

Электричество

Раздел 1 Электростатическое поле в вакууме.

Тема 1. Электрический заряд и его свойства. Электрическое поле. Напряженность и потенциал поля. Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме. Теорема Гаусса в интегральной форме.

Тема 2. Потенциал электростатического поля. Циркуляция вектора напряженности электростатического поля.

Раздел 2. Электростатическое поле в веществе.

- *Тема 3.* Свободные и связанные заряды. Диполь. Поле диполя. Поведение диполя во внешнем поле.
- *Тема 4.* Теорема Гаусса для электрического поля в диэлектриках, электрическое смещение. Диэлектрическая проницаемость

Раздел 3. Проводники в электрическом поле.

- *Тема 5.* Поле внутри проводника и у его поверхности. Электроемкость. Конденсаторы. Емкость плоского конденсатора.
- *Тема 6.* Энергия системы точечных зарядов. Энергия электрического поля. Объемная плотность энергии электрического поля.

Магнетизм

Раздел 4. Постоянный электрический ток.

- *Тема 7.* Законы Ома и Джоуля-Ленца в интегральной и локальной формах.
- *Тема 8*. Закон Био Савара Лапласа и его применение к расчету магнитного поля токов простейших конфигураций.

Раздел 5. Магнитное поле в веществе.

- *Тема 9.* Намагничивание вещества, магнитная восприимчивость. Напряженность магнитного поля. Магнитная проницаемость.
 - *Тема 10.* Условия для векторов В и H на границе двух магнетиков.

Раздел 6. Электромагнитная индукция.

- *Тема 11.* Закон Фарадея для ЭДС индукции. Вихревое электрическое ноле. Явление самоиндукции, индуктивность соленоида. Экстратоки замыкания и размыкания.
- *Тема 12.* Колебательный контур. Вынужденные колебания в колебательном контуре. Резонанс напряжений. Добротность контура. Затухающие колебания.

Раздел 7. Уравнения Максвелла.

- *Тема 13*. Ток смещения. Полная система уравнений электродинамики в интегральной форме.
- *Тема 14.* Вывод волнового уравнения для полей Е и Н. Закон сохранения энергии для полей.

2.3.3. Краткое содержание лабораторного практикума

- 1. Изучение работ электронного осциллпграфа
- 2. Исследование электрических свойств сегнетоэлектриков
- 3. Изучение магнитного поля соленоида с помощью датчика Холла
- 4. Изучение явления взаимной индукции
- 5. Изучение процессов зарядки и разрядки конденсатора
- 6. Изучение однофазных электрических цепей переменного тока
- 7. Исследование электрических процессов в простых линейных цепях при действии
- 8. Исследование свободных затухающих электромагнитных колебаний
- 9. Изучение вынужденных колебаний и явления резонанса в электрическом колебательном контуре
- 10. Изучение релаксационных колебаний

2.3.4. Материально-техническое обеспечение дисциплины

Для проведения учебных занятий по дисциплине "Физика 2" необходимо следующее материально-техническое обеспечение:

- 1. Аудиторное и лабораторное оборудование
- 2. Демонстрационные материалы
- 3. Лабораторные реактивы и вспомогательные материалы

Такое обеспечение позволяет проводить как теоретическое изучение курса, так и практические лабораторные занятия, обеспечивая качественное усвоение материала студентами.

2.4. Модульная структура дисциплины с распределением весов по формам контролей

Формы контролей		текущего контроля в результирую щей оценке текущего контроля (по модулям)		оормы ежуточ ого роля в говой енке ежуточ ого гроля	Вес итоговой оценки промежуточно го контроля в результирующ ей оценке промежуточны х контролей		Вес итоговой оценки промежуточного контроля в результирующей оценке промежуточных контролей (семестровой оценке)	Веса результирующей оценки промежуточных контролей и оценки итогового контроля в результирующей оценке итогового контроля
Вид учебной работы/контроля	$M1^1$	M2	M1	M2	M1	M2		
Контрольная работа (при наличии)			0.5	0.5				
Устный опрос <i>(при наличии)</i>								
Тест (при наличии)								
Лабораторные работы (при наличии)	0.5	0.5						
Письменные домашние задания (при наличии)								
Реферат (при наличии)								
Эссе (при наличии)								
Проект (при наличии)								
Другие формы (при наличии)	0.5	0.5						
Веса результирующих оценок					0.5	0.5		
текущих контролей в итоговых оценках промежуточных контролей								
Веса оценок промежуточных контролей в итоговых оценках промежуточных контролей								
Вес итоговой оценки 1-го промежуточного контроля в результирующей оценке промежуточных контролей							0.5	
вес итоговой оценки 2-го промежуточного контроля в результирующей оценке промежуточных контролей							0.5	
Вес результирующей оценки промежуточных контролей в результирующей оценке итогового контроля								0.5
Вес итогового контроля (Экзамен/зачет) в результирующей оценке итогового контроля								0.5
	$\sum = 1$	$\Sigma = 1$	$\sum = 1$	$\sum = 1$	$\sum = 1$	$\Sigma = 1$	∑ = 1	∑ = 1

1 Учебный Модуль

- 3. Теоретический блок (указываются материалы, необходимые для освоения учебной программы дисциплины)
 - 3.1. Материалы по теоретической части курса
 - 3.1.1. Учебник(и);
 - 1. Сивухин Д.В. Общий курс физики: В 5 т. (механика; термодинамика и молекулярная физика; электричество и магнетизм; оптика; атомная и ядерная физика) М.: Наука. 1983 1990.
 - 2. Савельев И.В. Курс общей физики: Учебное пособие. В 3-х т., 4-е изд., стер. ЦПб.: Изд. «Лань», 2005.
- 4. Фонды оценочных средств (указываются материалы, необходимые для проверки уровня знаний в соответствии с содержанием учебной программы дисциплины).
 - 4.1. Планы практических и семинарских занятий
- 1. Электрический заряд и его свойства. Электрическое поле. Напряженность и потенциал поля. Поток вектора напряженности. Теорема Гаусса для электростатического поля в вакууме. Теорема Гаусса в интегральной форме.
- 2. Потенциал электростатического поля. Циркуляция вектора напряженности электростатического поля.
- 3. Свободные и связанные заряды. Диполь. Поле диполя. Поведение диполя во внешнем поле.
- 4. Теорема Гаусса для электрического поля в диэлектриках, электрическое смещение. Диэлектрическая проницаемость
- 5. Поле внутри проводника и у его поверхности. Электроемкость. Конденсаторы. Емкость плоского конденсатора.
- 6. Энергия системы точечных зарядов. Энергия электрического поля. Объемная плотность энергии электрического поля.
- 7. Законы Ома и Джоуля-Ленца в интегральной и локальной формах.
- 8. Закон Био Савара Лапласа и его применение к расчету магнитного поля токов простейших конфигураций.
- 9. Намагничивание вещества, магнитная восприимчивость. Напряженность магнитного поля. Магнитная проницаемость.
- 10. Условия для векторов В и Н на границе двух магнетиков.
- 11. Закон Фарадея для ЭДС индукции. Вихревое электрическое ноле. Явление самоиндукции, индуктивность соленоида. Экстратоки замыкания и размыкания.
- 12. Колебательный контур. Вынужденные колебания в колебательном контуре. Резонанс напряжений. Добротность контура. Затухающие колебания.
- 13. Ток смещения. Полная система уравнений электродинамики в интегральной форме.

14. Вывод волнового уравнения для полей Е и Н. Закон сохранения энергии для полей.

4.2. Планы лабораторных работ и практикумов

- 1. Изучение работ электронного осциллпграфа
- 2. Исследование электрических свойств сегнетоэлектриков
- 3. Изучение магнитного поля соленоида с помощью датчика Холла
- 4. Изучение явления взаимной индукции
- 5. Изучение процессов зарядки и разрядки конденсатора
- 6. Изучение однофазных электрических цепей переменного тока
- 7. Исследование электрических процессов в простых линейных цепях при действии
- 8. Исследование свободных затухающих электромагнитных колебаний
- 9. Изучение вынужденных колебаний и явления резонанса в электрическом колебательном контуре
- 10. Изучение релаксационных колебаний

4.3. Материалы по практической части курса

- 4.3.1. Задачники (практикумы);
- 1. Иродов И.Е. "Задачи по общей физике" (раздел "Электродинамика")
- 2. Сивухин Д.В. "Общий курс физики. Электричество" (содержит теорию и задачи)
- 3. Рымкевич А.П. "Сборник задач по физике для поступающих в вузы" (раздел "Электричество и магнетизм")
- 4. Ландау Л.Д., Лифшиц Е.М. "Теоретическая физика. Том 2. Теория поля" (включает задачи повышенной сложности)

4.4. Вопросы и задания для самостоятельной работы студентов

I. Теоретические вопросы

- 1. Основные законы электростатики (закон Кулона, принцип суперпозиции).
- 2. Напряженность и потенциал электрического поля.
- 3. Теорема Гаусса и ее применение.
- 4. Электроемкость. Конденсаторы и их соединения.
- 5. Законы постоянного тока (закон Ома, законы Кирхгофа).
- 6. Магнитное поле и его характеристики.
- 7. Сила Лоренца и сила Ампера.
- 8. Закон полного тока (теорема Био-Савара-Лапласа).
- 9. Электромагнитная индукция (закон Фарадея, закон Ленца).

10. Уравнения Максвелла и их физический смысл.

П. Практические задания

- 1. Решение задач на вычисление электрического поля для различных распределений зарядов.
- 2. Определение емкости конденсаторов при различных соединениях.
- 3. Расчет токов и напряжений в электрических цепях с использованием законов Кирхгофа.
- 4. Определение силы, действующей на заряженную частицу в электрическом и магнитном полях.
- 5. Расчет индуктивности катушек и магнитного потока.
- 6. Исследование электромагнитных колебаний в колебательном контуре.
- 7. Определение параметров электромагнитных волн.

III. Лабораторные работы

- 1. Измерение электрического сопротивления методом амперметра и вольтметра.
- 2. Исследование работы конденсаторов в цепи переменного тока.
- 3. Изучение явления электромагнитной индукции.
- 4. Определение магнитного поля соленоида.
- 5. Изучение резонанса в электрических цепях.

4.5. Перечень экзаменационных вопросов

- 1. Электрическое поле. Напряженность и потенциал поля.
- 2. Теорема Гаусса для электростатического поля в вакууме.
- 3. Применение теоремы Гаусса к расчету полей.
- 4. Теорема Гаусса в дифференциальной форме.
- Уравнение Пуассона. Работа по перемещению заряда в электростатическом поле.
- 6. Циркуляция вектора напряженности электростатического поля.
- 7. Свободные и связанные заряды. Диполь. Поле диполя.
- 8. Поведение диполя во внешнем поле.
- 9. Поляризация диэлектриков. Виды поляризации. Диэлектрическая восприимчивость и ее зависимость от температуры.
- 10. Теорема Гаусса для электрического поля в диэлектриках, электрическое смещение. Диэлектрическая проницаемость.

- 11. Условия для векторов Е и D на границе двух диэлектрических сред.
- 12. Проводники в электрическом поле. Поле внутри проводника и у его поверхности.
- 13. Электроемкость. Конденсаторы. Емкость плоского конденсатора.
- Энергия системы точечных зарядов. Энергия заряженного уединенного проводника.
- 15. Энергия электрического поля. Объемная плотность энергии электрического поля.
- 16. Постоянный электрический ток. Уравнение непрерывности.
- 17. Законы Ома и Джоуля-Ленца в интегральной и дифференциальной формах.
- 18. Вывод законов Ома и Джоуля-Ленца из электронных представлений.
- 19. Магнитное поле движущегося заряда.
- 20. Закон Био Савара Лапласа. Расчет магнитного поля токов.
- 21. Теорема Гаусса для индукции магнитного поля в интегральной и дифференциальной форме.
- 22. Теорема о циркуляции вектора В. Расчет магнитного поля токов.
- 23. Поля соленоида и тороида.
- 24. Сила, действующая на заряд, движущийся в магнитном поле. Закон Ампера.
- 25. Контур с током в однородном и неоднородном магнитных полях.
- 26. Намагничивание вещества, магнитная восприимчивость. Напряженность магнитного поля. Магнитная проницаемость.
- 27. Поток и циркуляция вектора напряженности магнитного поля.
- 28. Условия для векторов В и Н на границе двух магнетиков.
- 29. Основные уравнения магнитостатики в интегральной и дифференциальной форме.
- 30. Явление электромагнитной индукции. Закон Фарадея для ЭДС индукции.
- 31. Явление самоиндукции, индуктивность соленоида.
- 32. Энергия магнитного поля проводника с током. Плотность энергии магнитного поля.
- 33. Колебательный контур, электрические колебания. Вынужденные колебания. Явление резонанса. Добротность колебательной

- 34. Ток смещения. Система уравнений Максвелла в интегральной и дифференциальной форме. Материальные уравнения.
- 4.6. Образцы экзаменационных билетов

ГОУ ВПО РОССИЙСКО-АРМЯНСКИЙ УНИВЕРСИТЕТ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ

Кафедра общей физики и квантовых наноструктур

Направление: Электроника и наноэлектроника Дисциплина: Физика 2 (бакалавриат І-ый курс, П-ой семестр)

Экзаменационный билет № **

- 1. Закон Кулона. Напряженность электрического поля
- 2. Индуктивность контура. Самоиндукция.
- 3. Задача.

Зав. кафедройОФКН	_Д.Б. Айрапетян
20 г.	