ГОУ ВПО Российско-Армянский (Славянский) университет

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

Наименование дисциплины: Б1.О.09 Квантовая физика

Автор (ы) <u>д.ф.-м.н., профессор Казарян Эдуард Мушегович</u> Ф.И.О, ученое звание (при наличии), ученая степень (при наличии)

Направление подготовки: 11.03.03 Конструирование и технология электронных средств

Согласовано:

Заведующий Кафедрой общей физики и квантовых наноструктур

Айрапетян Д.Б.

1. АННОТАЦИЯ

1.1. Краткое описание содержания данной дисциплины;

Квантовая физика — дисциплина, изучающая законы природы на уровне микрочастиц. Рассматриваются квантование энергии, волновые свойства материи, принцип неопределённости, уравнение Шрёдингера и явления, не объяснимые классической физикой. Курс формирует базу для понимания современных технологий и фундаментальных основ квантовой механики.

- **1.2.** Трудоемкость в академических кредитах и часах, формы итогового контроля (экзамен/зачет);
 - 6 академических кредитов / 216 часов. Форма итогового контроля экзамен.
- **1.3.** Взаимосвязь дисциплины с другими дисциплинами учебного плана специальности (направления)

Механика, Волновые процессы, Электромагнетизм, Физика макросистем.

1.4. Результаты освоения программы дисциплины:

Код компетенции (в соответствии рабочим с учебным планом)	Наименование компетенции (в соответствии рабочим с учебным планом)	Код индикатора достижения компетенций (в соответствии рабочим с учебным планом)	Наименование индикатора достижений компетенций (в соответствии рабочим с учебным планом)
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1	Знает методики поиска, сбора и обработки информации, метод системного анализа
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.2	Умеет применять методики поиска, сбора и обработки информации, осуществлять критический анализ и синтез информации, полученной из разных источников, применять системный подход для решения поставленных задач.
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения	УК-1.3	Владеет методами поиска, сбора и обработки, критического анализа и синтеза

	поставленных задач		информации, методикой системного подхода для решения поставленных задач.
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.1	Знает фундаментальные законы природы и основные физические и математические законы и методы накопления, передачи и обработки информации.
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.2	Умеет применять физические законы и математически методы для решения задач теоретического и прикладного характера.
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.3	Владеет навыками использования знаний физики и математики при решении практических задач.
ОПК-2	Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.1	Знает основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации.
ОПК-2	Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.2	Умеет выбирать способы и средства измерений и проводить экспериментальные исследования.
ОПК-2	Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.3	Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений.

2. УЧЕБНАЯ ПРОГРАММА

2.1. Цели и задачи дисциплины

Цель: Формирование у студентов фундаментальных знаний и практических навыков в области квантовой физики, необходимых для понимания физических процессов на микроскопическом уровне и их применения в современных технологиях.

Задачи:

- Изучение основных принципов квантовой механики: квантования, суперпозиции, неопределённости и дуализма;
- Освоение математического аппарата квантовой физики, включая уравнение Шрёдингера;

- Ознакомление с квантовыми явлениями: туннелирование, запутанность, эффекты спина;
- Развитие умений применять квантовые модели для анализа физических процессов в атомных, оптических и твердотельных системах.

2.2. Трудоемкость дисциплины и виды учебной работы (в академических часах и зачетных единицах) (удалить строки, которые не будут применены в рамках дисциплины)

Виды учебной работы	Всего, в акад. часах	Распределение по семестрам 1 сем
1	2	3
1.Общая трудоемкость изучения дисциплины по семестрам, в т. ч.:	216	216
1.1. Аудиторные занятия, в т. ч.:	112	112
1.1.1.Лекции	48	48
1.1.2.Практические занятия, в т. ч.	32	32
1.1.3.Лабораторные работы	32	32
1.2. Самостоятельная работа, в т. ч.:	77	77
1.3. Консультации		
Итоговый контроль (Экзамен, Зачет, диф. зачет - указать)	Экзамен	27

2.3. Содержание дисциплины

2.3.1. Тематический план и трудоемкость аудиторных занятий (модули, разделы дисциплины и виды занятий) по рабочему учебному плану

Разделы и темы дисциплины	Всего (ак. часов)	Лекции (ак. часов)	Практ. Занятия (ак. часов)	Лабор. (ак. часов)
1	2=3+4+5+6 +7	3	4	6
Раздел 1. Квантовые свойства электромагнитного излучения	14	6	4	4
Раздел 2. Атом Резерфорда — Бора	12	4	4	4
Раздел 3. Волновые свойства частиц	12	4	4	4
Раздел 4. Уравнение Шредингера. Квантование	12	4	4	4

Раздел 5. Основы квантовой теории	10	6	2	2
Раздел 6. Квантование атомов	14	6	4	4
Раздел 7. Магнитные свойства атома6	8	4	4	4
Раздел 8. Атомное ядро	10	6	2	2
Раздел 9. Элементарные частицы	16	8	4	4
ИТОГО	112	48	32	32

2.3.2. Краткое содержание разделов дисциплины в виде тематического плана

Тема 1. Квантовые свойства электромагнитного излучения

Рассматриваются фотоэффект, эффект Комптона, законы излучения и квантовая природа света. Вводится понятие фотона.

Тема 2. Атом Резерфорда — **Бора**

Изучаются модель атома Резерфорда, постулаты Бора, объяснение спектров водорода и переходы между энергетическими уровнями.

Тема 3. Волновые свойства частиц

Описывается корпускулярно-волновой дуализм, опыт с дифракцией электронов, соотношение де Бройля.

Тема 4. Уравнение Шредингера. Квантование

Вводится уравнение Шредингера, обсуждаются стационарные состояния, квантование энергии на примере потенциальной ямы и гармонического осциллятора.

Тема 5. Основы квантовой теории

Рассматриваются операторы, состояния, наблюдаемые величины, принцип суперпозиции, вероятность и интерпретация волновой функции.

Тема 6. Квантование атомов

Изучаются орбитали, квантовые числа, модель атома водорода, энергетические уровни и вероятностная интерпретация.

Тема 7. Магнитные свойства атома

Рассматриваются спин, орбитальный и спиновый магнетизм, эффект Зеемана, магнитный момент электрона.

Тема 8. Атомное ядро

Изучаются структура ядра, типы излучений, радиоактивность, ядерные реакции и модели ядра.

Тема 9. Элементарные частицы

Обзор современных представлений о фундаментальных частицах, классификация частиц,

2.3.3. Краткое содержание семинарских/практических занятий/лабораторного практикума

Практические занятия включают решение задач на проектирование ФИС, моделирование компонентов в специализированных программах (например, Lumerical, COMSOL), анализ экспериментальных данных.

- 1 Основы математического аппарата квантовой механики
- 2. Постулаты квантовой механики
- 3. Решение уравнения Шрёдингера
- 4. Оператор импульса и энергии
- 5. Квантовые переходы и измерения
- 6. Спин и квантовая статистика

2.3.4. Материально-техническое обеспечение дисциплины

- Мультимедийное оборудование для лекций.
- Учебная лаборатория для проведения лабораторных занятий

2.4. Модульная структура дисциплины с распределением весов по формам контролей

Вес формы (форм) текущего контроля в результирую щей оценке текущего контроля (по модулям)		Вес формы промежуточно го контроля в итоговой оценке промежуточно го контроля		Вес итоговой оценки промежуточно го контроля в результирую щей оценке промежуточных контролей		Вес итоговой оценки промежуточног о контроля в результирующе й оценке промежуточных контролей (семестровой оценке)	Веса результирующей оценки промежуточных контролей и оценки итогового контроля в результирующей оценке итогового контроля	
Вид учебной работы/контроля	$M1^1$	M2	M1	M2	M1	M2		
Контрольная работа (при наличии)			0.5	0.5				
Устный опрос <i>(при наличии)</i>								
Лабораторные работы (при наличии)	0.5	0.5						
Письменные домашние задания (при наличии)								

¹ Учебный Модуль

.

Решение задач	0.5	0.5						
Веса результирующих оценок текущих				_	0.5	0.5		
контролей в итоговых оценках								
промежуточных контролей								
Веса оценок промежуточных контролей в								
итоговых оценках промежуточных								
контролей								
Вес итоговой оценки 1-го							0.5	
промежуточного контроля в								
результирующей оценке промежуточных								
контролей								
Вес итоговой оценки 2-го							0.5	
промежуточного контроля в								
результирующей оценке промежуточных								
контролей								
Вес результирующей оценки								0.5
промежуточных контролей в								
результирующей оценке итогового								
контроля								
Вес итогового контроля								0.5
(Экзамен/зачет) в результирующей								
оценке итогового контроля								
	$\sum = 1$	∑ = 1	$\sum = 1$					

- 3. Теоретический блок (указываются материалы, необходимые для освоения учебной программы дисциплины)
 - 3.1. Материалы по теоретической части курса
 - 3.1.1. Учебник(и);
 - 1. И.Е. Иродов. КВАНТОВАЯ ФИЗИКА основные законы, 2014.
 - 2. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория
 - 3. Блохинцев Д.И. Основы квантовой механики
 - 3.1.2. Учебное(ые) пособие(я);
 - 1. **Ландау Л.Д., Лифшиц Е.М.** Квантовая механика. Нерелятивистская теория. М.: Наука, 1989
- 4. Фонды оценочных средств (указываются материалы, необходимые для проверки уровня знаний в соответствии с содержанием учебной программы дисциплины).
 - 4.1. Планы практических и семинарских занятий

№ занятия	Тема занятия	Основные разделы и задачи по Иродову	Цель занятия
11	Введение в квантовую	исторические эксперименты	Ознакомление с основами квантовой теории и методами решения задач

№ занятия	Тема занятия	Основные разделы и задачи по Иродову	Цель занятия
		Герца)	
2	Фотоэффект	Раздел: Фотоэффект, задачи №1-10	Освоение формулы Эйнштейна для фотоэффекта, расчет энергетических характеристик
3	Эффект Комптона	Раздел: Эффект Комптона, задачи №11–17	Изучение корпускулярно- волнового дуализма, расчет комптоновского сдвига
4	Корпускулярно- волновой дуализм	Раздел: Волновые свойства частиц, задачи №18–25	Применение уравнений де Бройля и неопределенностей Гейзенберга
5	Принцип неопределенности	Задачи №26–30	Анализ неопределенностей координаты и импульса, энергии и времени
6	Квантовая механика и потенциальные ямы	Раздел: Частицы в потенциальной яме, задачи №31–45	Решение задач на квантование энергии, туннельный эффект
7	Осциллятор и операторный метод	Раздел: Квантовый гармонический осциллятор, задачи №46–55	Работа с уравнением Шредингера и квантовыми состояниями
8	Атом водорода	Раздел: Атом водорода, задачи №56–65	Изучение модели Бора, уровней энергии, спектров
9	Спин и статистика	Раздел: Спин и принцип Паули, задачи №66–72	Введение в спиновые характеристики и фермионы/бозоны
10	Итоговое занятие: решение комплексных задач	Смешанные задачи на весь курс	Обобщение и систематизация знаний, подготовка к зачёту/экзамену

4.2. Планы лабораторных работ и практикумов

Лабораторные работы

	vinospiropiizie pinosizi					
Nº	Тема лабораторной работы	Цель	Основные измерения			
1	Фотоэффект	Определение постоянной Планка по фотоэффекту	Измерение запирающего напряжения при различных длинах волн			
2	Эффект Комптона	Изучение зависимости комптоновского сдвига от угла рассеяния	Измерение рассеянных фотонов и определение изменения длины волны			
3	Опыт Франка – Герца	Подтверждение квантованности энергетических уровней атома	Исследование зависимости тока от ускоряющего напряжения			
4	Интерференция электронов	Демонстрация волновых свойств материи	Наблюдение интерференционной картины электронов			
5	Туннельный эффект	Изучение прохождения частиц через потенциальный барьер	Измерение токов при различных напряжениях на туннельном диоде			

№	Тема лабораторной работы	Цель	Основные измерения
6	1	1 1 1	Измерение спектральных линий и расчет постоянной Ридберга

Практикумы

No	Тема практикума	Цель	Основные методы
1	Расчёт фотоэффекта		Расчёт энергии фотонов, работа выхода, скорость электронов
2	Задачи на эффект Комптона	углуоление понимания	Вывод и применение формулы Комптона
11 1	-	^ ^ .,	Оценка ограничений точности при измерениях
14	-	_	Определение уровней энергии и вероятностей
5	Спектр атома водорода	П Іпимецецие молели Бора	Расчёт длин волн серии Лаймана, Бальмера
6	Квантовый осциллятор	_ · ·	Построение уровней энергии и переходов

4.3. Материалы по практической части курса

- 4.3.1. Задачники (практикумы);
- 1. Иродов И.Е. Задачи по общей физике. Квантовая физика
- 2. Грибов В.Н. Задачи по квантовой механике с решениями

4.4. Вопросы и задания для самостоятельной работы студентов

Вопросы для самопроверки:

- 1. Что такое волновая функция? Какое физическое значение она имеет?
- 2. Перечислите основные постулаты квантовой механики.
- 3. Объясните принцип неопределённости Гейзенберга и его физический смысл.
- 4. Что такое оператор в квантовой механике? Как связаны собственные значения и результаты измерений?
- 5. В чем заключается отличие стационарного и нестационарного уравнений Шрёдингера?
- 6. Как происходит квантовое туннелирование и в каких системах оно проявляется?
- 7. Опишите понятие спина и его роль в квантовой механике.
- 8. Как интерпретируется вероятность измерения наблюдаемой величины?

Задания для самостоятельного выполнения:

- 1. Решить уравнение Шрёдингера для частицы в бесконечной потенциальной яме и построить график волновой функции для первых трех уровней энергии.
- 2. Исследовать влияние изменения параметров потенциального барьера на вероятность туннелирования (расчёт и визуализация).

- 3. Провести численное моделирование одномерного квантового гармонического осциллятора с использованием Python (библиотеки NumPy, Matplotlib).
- 4. Написать краткий доклад или реферат на тему «Принцип неопределённости и его эксперименты».
- 5. Составить таблицу соответствия основных квантовых операторов и физических величин, указать их собственные состояния и спектры.
- 6. Выполнить упражнения из методического пособия по квантовой механике, предоставленного преподавателем.
- **4.5.** Образцы вариантов контрольных работ, тестов и/или других форм текущих и промежуточных контролей

Контрольная работа (Промежуточный контроль)

Форма: тест с выбором одного правильного ответа (вариант 1)

Максимум: 15 баллов (по 1 баллу за вопрос)

Раздел I. Теоретические основы (10 вопросов)

- 1. Фотоэффект невозможен, если:
 - о а) Частота падающего света меньше пороговой
 - о б) Плотность фотонов мала
 - о в) Свет падает под углом
 - о г) Электрон находится на орбитали
- 2. Уравнение Эйнштейна для фотоэффекта имеет вид:
 - \circ a) E=mc2E = mc^2E=mc2
 - \circ б) $Ek=hv-AвыxE_k = h\nu A_{\text{bux}} Ek=hv-Aвыx}$
 - \circ B) E=hvE = h\nuE=hv
 - \circ Γ) Ek=Aвыx-hvE k=A {\text{выx}} h\nuEk=Aвыx-hv
- 3. Комптоновское рассеяние подтверждает:
 - о а) Волновую природу света
 - о б) Квантовую природу света
 - о в) Законы отражения
 - о г) Закон сохранения импульса
- 4. Какова длина волны де Бройля электрона с массой 9.1×10–319.1 \times 10^{-2110.01\times 10.01\times 10.01\times
 - 31}9.1×10–31 кг и скоростью 2×1062 \times 10^62×106 м/с?
 - o a) 3.6 HM
 - о б) 0.4 нм
 - о в) 1.2 пм
 - о г) 7.3 нм
- 5. Принцип неопределенности Гейзенберга описывает соотношение между:
 - о а) Энергией и длиной волны
 - о б) Масой и зарядом
 - о в) Координатой и импульсом
 - о г) Частотой и длиной волны
- 6. Уравнение Шредингера описывает:
 - о а) Плотность вещества

- о б) Эволюцию классических частиц
- о в) Вероятностную динамику квантовой системы
- о г) Движение фотонов
- 7. Для частицы в бесконечно глубокой потенциальной яме энергии уровня пропорциональны:
 - o a) nnn
 - o б) n2n^2n2
 - o B) $n \cdot sqrt\{n\}n$
 - \circ Γ) $\ln[f_0]$ n\ln n\ln n
- 8. Спин электрона равен:
 - o a) 1
 - ∘ б) 0
 - в) 12\frac{1}{2}21
 - о г) 2
- 9. Энергия основного состояния атома водорода:
 - o a) -3.4 эВ
 - о б) -1.5 эВ
 - о в) -13.6 эВ
 - о г) 0 эВ
- 10. Какой квантовый эффект позволяет электронам проходить сквозь потенциальный барьер?
- а) Фотоэффект
- б) Эффект Доплера
- в) Туннельный эффект
- г) Комптоновский эффект

Раздел II. Задача на выбор (одна из двух, 5 баллов)

Выберите и решите одну задачу (только одна засчитывается):

Задача 1.

Свет с длиной волны 250 нм падает на металл, работа выхода которого составляет 3.5 эВ. Найти максимальную кинетическую энергию фотоэлектрона.

Задача 2.

Электрон с энергией 5 эВ сталкивается с потенциальным барьером высотой 6 эВ и толщиной 0.5 нм. Оцените вероятность туннелирования через барьер (используйте приближенную формулу без точных вычислений).

Критерии оценки:

- Каждый правильный тест 1 балл
- Решённая задача до 5 баллов (в зависимости от полноты и обоснования решения)

Ключ к разделу І. Теоретические основы

No	Правильный ответ

No	Правильный ответ		
1	а) Частота падающего света меньше пороговой		
2	6) $Ek=hv-AB$ ы $xE_k=h$ \nu - $A_{\text{text}}B$ ы x } $Ek=hv-AB$ ых		
3	б) Квантовую природу света		
4	б) 0.4 нм (по формуле $\lambda = hmv \setminus lambda = \int frac\{h\}\{mv\}\lambda = mvh\}$		
5	в) Координатой и импульсом		
6	в) Вероятностную динамику квантовой системы		
7	6) n2n^2n2		
8	B) 12\frac{1}{2}21		
9	в) -13.6 эВ		
10	в) Туннельный эффект		

Раздел II. Примерные ответы к задачам

Задача 1 (Фотоэффект):

- $\lambda=250\lambda=250\lambda=250\ mm \rightarrow v=c\lambda\approx1.2\times1015\ \Gamma u\nu=\frac{c}{\lambda} \lambda = 1.2\times1015\ \Gamma u\nu=\frac{c}{\lambda} \lambda = 1.2\times1015$
- $E=hv\approx4.96 \ \exists BE=h\ \text{nu } \Rightarrow 4.96 \ \exists E=hv\approx4.96 \ \exists B$
- Ek=hv-ABыx=4.96-3.5=1.46 $\Rightarrow BE_k = h\nu A_{\text{bux}} = 4.96 3.5 = \boxed{1.46} \text{ $3B}}Ek=hv-ABыx=4.96-3.5=1.46 B

Задача 2 (Туннельный эффект):

- Используется приближённая формула $T \sim \exp[fo](-2a2m(U0-E)/\hbar)T \simeq \exp[left(-2a-2m(U0-E)/\hbar)] \times (-2a2m(U0-E)/\hbar)$
- Приближённая оценка: вероятность мала, но ненулевая; **порядка** $10-210^{-2}10-2-10-310^{-3}10-3$.

Ответ: Показано, что Т>0Т > 0Т>0, эффект существует.

4.6. Перечень экзаменационных вопросов

- 1. Основные постулаты квантовой механики.
- 2. Физический смысл и интерпретация волновой функции.
- 3. Уравнение Шрёдингера: стационарное и нестационарное.
- 4. Принцип неопределённости Гейзенберга: формулировка и примеры.
- 5. Операторы и их свойства в квантовой механике.
- 6. Собственные значения и собственные функции операторов.
- 7. Квантование энергии и пример: частица в бесконечной потенциальной яме.
- 8. Квантовое туннелирование: теория и применение.
- 9. Квантовый гармонический осциллятор: основные характеристики.
- 10. Спин и его математическое описание (матрицы Паули).

- 11. Статистика фермионов и бозонов.
- 12. Принцип суперпозиции состояний.
- 13. Плотностная матрица и смешанные состояния.
- 14. Унитарная эволюция квантовых состояний и уравнение Шрёдингера во времени.
- 15. Представления квантовой механики: координатное и импульсное.
- 16. Оператор момента импульса и его квантование.
- 17. Квантовые переходы и вероятность измерений.
- 18. Взаимодействие квантовой системы с внешним полем (кратко).
- 19. Энергетические уровни атома водорода (основные принципы).
- 20. Применение квантовой механики в современных технологиях (кратко).
 - 4.7. Образцы экзаменационных билетов

<u>ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ</u> Кафедра общей физики и квантовых наноструктур

Направление: Конструирование и технология электронных средств Дисциплина: Квантовая физика (бакалавриат II-ой курс, II-ой семестр)

Экзаменационный билет № **

- 1. Плотностная матрица и смешанные состояния.
- 2. Квантование энергии и пример: частица в бесконечной потенциальной яме.
- 3. Задача.

Зав. кафедройОФКН	Д.Б. Айрапетян	
<u>20_</u> r.		