ГОУ ВПО Российско-Армянский (Славянский) университет

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

Наименование дисциплины: Б1.О.10 Физика макросистем

Автор (ы) <u>к.ф.-м.н., преподаватель Апатеан Севак Суренович</u> Ф.И.О, ученое звание (при наличии), ученая степень (при наличии)

Направление подготовки: 11.03.03 Электроника и наноэлектроника Наименование образовательной программы: Конструирование и технология электронных средств

Согласовано:

Заведующий Кафедрой общей физики и квантовых наноструктур

Айрапетян Д.Б.

(подписк)

1. АННОТАЦИЯ

1.1. Краткое описание содержания данной дисциплины;

Дисциплина "Физика макросистем" посвящена изучению закономерностей поведения систем с большим числом частиц на основе термодинамики и статистической физики. Рассматриваются фундаментальные понятия термодинамического равновесия, флуктуаций, фазовых переходов и коллективных явлений. Курс формирует представление о взаимосвязи между микроскопическими свойствами частиц и макроскопическими параметрами среды.

- **1.2.** Трудоемкость в академических кредитах и часах, формы итогового контроля (экзамен/зачет);
 - 6 академических кредитов / 216 часов. Форма итогового контроля экзамен.
- **1.3.** Взаимосвязь дисциплины с другими дисциплинами учебного плана специальности (направления)

Механика, Волновые процессы, Электромагнетизм, Квантовая физика.

1.4. Результаты освоения программы дисциплины:

Код компетен- ции (в соответ- ствии рабочим с учебным планом)	Наименование компетенции (в соответствии рабочим с учебным планом)	Код индикатора достижения компетенций (в соответствии рабочим с учебным планом)	Наименование индикатора достижений компетенций(в соответствии рабочим с учебным планом)
УК-2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.1	Знает виды ресурсов и ограничений для решения профессиональных задач
УК-2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений	УК-2.2	Умеет проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения
УК-2	Способен определять круг задач в	УК-2.3	Владеет методиками

	рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм, имеющихся ресурсов и ограничений		разработки цели и задач проекта
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.1	Знает фундаментальные законы природы и основные физические и математические законы и методы накопления, передачи и обработки информации.
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.2	Умеет применять физические законы и математически методы для решения задач теоретического и прикладного характера.
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.3	Владеет навыками использования знаний физики и математики при решении практических задач.
ОПК-2	Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.1	Знает основные методы и средства проведения экспериментальных исследований, системы стандартизации и сертификации.
ОПК-2	Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.2	Умеет выбирать способы и средства измерений и проводить экспериментальные исследования.
ОПК-2	Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных	ОПК-2.3	Владеет способами обработки и представления полученных данных и оценки погрешности результатов измерений.

2. УЧЕБНАЯ ПРОГРАММА

2.1. Цели и задачи дисциплины

Цель: Сформировать у студентов фундаментальные представления о законах и методах описания поведения макроскопических систем на основе термодинамики и статистической физики.

Задачи:

- Изучить основные законы и принципы термодинамики;
- Ознакомить с методами статистического описания макроскопических систем;
- Понять природу фазовых переходов и флуктуационных явлений;
- Научиться применять теоретические модели для анализа физических процессов в макросистемах;
- Развить навыки решения задач, связанных с термодинамическими и статистическими характеристиками систем.

2.2. Трудоемкость дисциплины и виды учебной работы (в академических часах и зачетных единицах) (удалить строки, которые не будут применены в рамках дисциплины)

Виды учебной работы	Всего, в акад. часах	Распределение по семестрам 1 сем
1	2	3
1.Общая трудоемкость изучения дисциплины по семестрам, в т. ч.:	216	216
1.1. Аудиторные занятия, в т. ч.:	112	112
1.1.1.Лекции	48	48
1.1.2.Практические занятия, в т. ч.	32	32
1.1.3.Лабораторные работы	32	32
1.2. Самостоятельная работа, в т. ч.:	56	56
1.3. Консультации		
Итоговый контроль (Экзамен, Зачет, диф. зачет - указать)	Экзамен	48

2.3. Содержание дисциплины

2.3.1. Тематический план и трудоемкость аудиторных занятий (модули, разделы дисциплины и виды занятий) по рабочему учебному плану

Разделы и темы дисциплины	Всего (ак. часов)	Лекции (ак. часов)	Практ. Занятия (ак. часов)	Лабор. (ак. часов)
1	2=3+4+5+6 +7	3	4	6
Тема 1. Первое начало термодинамики	24	8	6	6

Тема 2. Статистическая физика. Распределения Максвелла и	8	8	4	4
Тема 3. Второе начало термодинамики. Энтропия	8	8	4	4
Тема 4. Квантовые статистики и их применения	8	8	4	4
Тема 5. Состояния вещества	8	8	4	4
Тема 6. Неравновесные макросистемы		8	4	4
ИТОГО	120	48	32	32

2.3.2. Краткое содержание разделов дисциплины в виде тематического плана

Тема 1. Первое начало термодинамики Рассматриваются основные понятия внутренней энергии, теплоты и работы, формулировки первого начала термодинамики, а также применение закона сохранения энергии к термодинамическим процессам в макроскопических системах.

Тема 2. Статистическая физика. Распределения Максвелла и Больцмана Рассматриваются основы статистического описания макроскопических систем. Изучаются распределения Максвелла для скоростей молекул и Больцмана — для энергий, их физический смысл и применение к идеальному газу.

Тема 3. Второе начало термодинамики. Энтропия Рассматриваются формулировки второго начала термодинамики, понятие необратимости процессов и введение энтропии как меры беспорядка. Объясняется направление естественных процессов и роль энтропии в установлении теплового равновесия.

Тема 4. Квантовые статистики и их применения Рассматриваются различия между классической и квантовой статистикой. Изучаются статистики Бозе — Эйнштейна и Ферми — Дирака, их физический смысл и применение к системам с большим числом частиц, таким как электроны в металле и фотоны в излучении.

Тема 5. Состояния вещества Изучаются основные агрегатные состояния вещества: твёрдое, жидкое, газообразное и плазма. Рассматриваются их характеристики на микроскопическом уровне, переходы между состояниями и условия их существования.

Тема 6. Неравновесные макросистемы Рассматриваются системы, находящиеся вне термодинамического равновесия. Изучаются процессы переноса массы, импульса и энергии, а также роль градиентов и флуктуаций в их описании. *Литература:* [2], [5]

2.3.3. Краткое содержание семинарских/практических занятий/лабораторного практикума

Практические занятия включают решение задач, направленных на количественное описание макроскопических систем, анализ термодинамических процессов, моделирование распределений и неравновесных состояний с использованием программных средств (например, MATLAB, Python c SciPy), а также обработку экспериментальных данных.

- 1. Первое и второе начала термодинамики
- 2. Распределения Максвелла и Больцмана
- 3. Энтропия и термодинамическая вероятность
- 4. Квантовые статистики: Бозе Эйнштейна и Ферми Дирака
- 5. Переходы фаз и состояния вещества
- 6. Неравновесные процессы и транспортные явления

2.3.4. Материально-техническое обеспечение дисциплины

- Мультимедийное оборудование для лекций.
- Учебная лаборатория для проведения лабораторных занятий

2.4. Модульная структура дисциплины с распределением весов по формам контролей

Формы контролей	Вес формы (форм) текущего контроля в результирую щей оценке текущего контроля (по модулям)		(форм) текущего контроля в езультирую цей оценке текущего контроля (по		Вес итоговой оценки промежуточно го контроля в результирую щей оценке промежуточных контролей		Вес итоговой оценки промежуточног о контроля в результирующе й оценке промежуточных контролей (семестровой оценке)	Веса результирующей оценки промежуточных контролей и оценки итогового контроля в результирующей оценке итогового контроля
Вид учебной работы/контроля	$M1^1$	M2	M1	M2	M1	M2		
Контрольная работа (при наличии)			0.5	0.5				
Устный опрос (при наличии)								
Лабораторные работы (при наличии)	0.5	0.5						
Письменные домашние задания (при наличии)								
Решение задач	0.5	0.5						
Веса результирующих оценок текущих контролей в итоговых оценках промежуточных контролей					0.5	0.5		

¹ Учебный Модуль

.

Веса оценок промежуточных контролей в итоговых оценках промежуточных								
контролей Вес итоговой оценки 1-го							0.5	
промежуточного контроля в							0.5	
результирующей оценке промежуточных контролей								
Вес итоговой оценки 2-го							0.5	
промежуточного контроля в								
результирующей оценке промежуточных								
контролей								
Вес результирующей оценки								0.5
промежуточных контролей в								
результирующей оценке итогового								
контроля								
Вес итогового контроля								0.5
(Экзамен/зачет) в результирующей								
оценке итогового контроля								
	$\sum = 1$	$\sum_{1} =$	$\sum = 1$	$\sum = 1$	$\sum = 1$	$\sum = 1$	∑ = 1	$\sum = 1$

- 3. Теоретический блок (указываются материалы, необходимые для освоения учебной программы дисциплины)
 - 3.1. Материалы по теоретической части курса
 - 3.1.1. Учебник(и);
 - 1. Иродов И.Е., Физика макросистем, Основные законы, 2015г
 - 2. Молекулярная физика, Кикоин, Абрам Константинович; Кикоин, Исаак Константинович, 2008г.
 - 3. Курс общей физики, Т. 1. Механика. Молекулярная физика, Савельев, Игорь Владимирович, 2008г.
 - 3.1.2. Учебное(ые) пособие(я);
 - 1. Смирнов В.И. Неравновесные процессы в физике, СПб.: Лань, 2017
- 4. Фонды оценочных средств (указываются материалы, необходимые для проверки уровня знаний в соответствии с содержанием учебной программы дисциплины).
 - 4.1. Планы практических и семинарских занятий

Nº	Тема практического занятия	Основные понятия	Упражнения и типовые задачи (по Иродову)
1	Введение. Макросистемы и	Состояние, параметры,	Обсуждение задач 1.1–1.5
1	макропараметры	термодинамическое равновесие	(том «Молекулярная физи-

№	Тема практического занятия	Основные понятия	Упражнения и типовые задачи (по Иродову)
			ка»)
11 /. 1	Температура и её измерение	Термометры, температурные шкалы, нулевая термодинамика	Задачи 1.6–1.10
3	Молекулярно- кинетическая теория иде- ального газа	Средняя энергия, уравнение состояния, давление	Задачи 2.1–2.15
11/21	Распределение Максвелла и характерные скорости	Модель распределения, температурная зависимость	Задачи 2.16–2.25
11	Работа и теплота. Первый закон термодинамики	Внутренняя энергия, работа, теплоёмкость	Задачи 3.1–3.10
III I	Политропные процессы. Адиабата	Изменение параметров, графики процессов	Задачи 3.11–3.18
	Второй закон термодинамики. Энтропия	Обратимость, циклы, изменение энтропии	Задачи 4.1–4.15
11 X	Циклы тепловых машин. КПД	Карно, холодильные машины, КПД и эксергия	Задачи 4.16–4.25
	Фазовые переходы	Условия фазового равновесия, диаграммы	Задачи 5.1–5.8
10	Повторение и анализ типовых задач		Обзор задач повышенной сложности

4.2. Планы лабораторных работ и практикумов

№	Название лабораторной работы	Цель работы	Основные измеряемые и рассчитываемые величины
	Изучение закона Бойля– Мариотта	Проверка зависимости PV=constPV = constPV=const при T=constT = constT=const	Давление, объем, температура
2	Определение теплоемкости твёрдого тела	Исследование теплоёмкости методом нагрева	Температура, масса, мощность
3	Изучение уравнения состояния идеального газа	Проверка PV=nRTPV = nRTPV=nRT, определение по- стоянной RRR	Объём, давление, температура
4	Определение коэффициента теплопроводности	Измерение теплового потока через материалы	ΔΤ, мощность, геометрия образца
5	Исследование изотермического и адиабатического процессов	Построение графиков P–V процессов, сравнение с теорией	Давление, объём, температура
6	Определение коэффициента линейного расширения	Наблюдение теплового удлинения твёрдых тел	ΔL, температура, исходная длина

№	Название лабораторной работы	Цель работы	Основные измеряемые и рассчитываемые величины
11 / 1	•		Масса, температура, энергия
8	Исследование термодинамического цикла (цикл Карно, модельный)	построение цикла, оценка кид	Тепло, работа, температура
9	імоленирование распреленения	* * *	Распределения, средние значения
10	юинированная или проектная п	±	Системный подход, обоснование результатов

4.3. Материалы по практической части курса

4.3.1. Задачники (практикумы);

- 1. Иродов И.Е. Задачи по общей физике
- 2. Савельев И.В. Курс общей физики. Задачи и упражнения. Том
- 3. Земанский М., Дитманн Р. Теплота и термодинамика: курс и задачи

4.4. Вопросы и задания для самостоятельной работы студентов

- 1. Рассчитать изменение внутренней энергии идеального газа при изотермическом, изобарическом и изохорическом процессах, используя первое начало термодинамики. Привести выводы и графики зависимости.
- 2. Проанализировать условия фазового перехода первого рода на примере перехода жидкость—пар. Описать физический смысл параметров Клапейрона—Клаузиуса и провести расчет температуры кипения вещества при пониженном давлении.
- 3. Исследовать модель теплопроводности в твердых телах с использованием уравнения теплопроводности Фурье. Составить расчетную задачу и решить её с применением соответствующих граничных условий.
- 4. Построить изотермы Ван-дер-Ваальса для реального газа и определить область метастабильных и нестабильных состояний. Описать метод Максвелла для построения изотермы с равновесием фаз.

- 5. Описать процессы переноса массы, импульса и энергии в макросистемах, определить уравнения непрерывности и на их основе рассчитать стационарное распределение плотности потока в цилиндрической системе координат.
- 6. Рассчитать энтропию и её изменение при квазистатическом адиабатическом и необратимом процессе. Обосновать термодинамическое неравенство Клаузиуса и его применение к реальным макросистемам.
- 7. Исследовать критическое состояние вещества, определить критические параметры (температуру, давление, объем) на основе уравнения состояния. Привести примеры практического значения критических параметров в технических системах.
- **4.5.** Образцы вариантов контрольных работ, тестов и/или других форм текущих и промежуточных контролей

Тест

Вариант 1

- **1.** Как изменяется давление идеального газа при уменьшении объёма в 2 раза при постоянной температуре?
- А) Уменьшается в 2 раза
- Б) Увеличивается в 2 раза
- В) Увеличивается в 4 раза
- Г) Не изменяется
- 2. Средняя кинетическая энергия молекулы идеального газа пропорциональна:
- А) массе молекулы
- Б) объёму газа
- В) температуре
- Г) давлению
- 3. Первый закон термодинамики выражается уравнением:
- A) $Q=A+\Delta UQ = A + \Delta UQ = A+\Delta U$
- Б) $Q = \Delta U AQ = \Delta U AQ = \Delta U A$
- B) $A=Q+\Delta UA=Q+\Delta U$
- Γ) Q=A- Δ UQ = A \Delta UQ=A- Δ U
- 4. Работа газа при изотермическом расширении рассчитывается по формуле:
- A) $A=p\Delta VA = p \setminus Delta VA = p\Delta V$

- Б) $A=nRTln[fo]V2V1A = nRT \ln \frac{V_2}{V_1}A=nRTlnV1V2$
- B) $A=\Delta UA = \Delta UA = \Delta U$
- Γ) A=CV Δ TA = C_V \Delta TA=CV Δ T
- **5.** Что происходит с внутренней энергией идеального одноатомного газа при адиабатическом расширении?
- А) Увеличивается
- Б) Не изменяется
- В) Уменьшается
- Г) Зависит от начального давления
- 6. Энтропия замкнутой системы:
- А) Всегда остаётся постоянной
- Б) Может уменьшаться
- В) Может увеличиваться или уменьшаться
- Г) Никогда не убывает
- 7. Какой процесс протекает при постоянной температуре?
- А) Изобарный
- Б) Изохорный
- В) Адиабатный
- Г) Изотермический
- 8. Уравнение состояния идеального газа:
- A) pV=nRTpV=nRTpV=nRT
- β) $p=ρghp = \rho gh$
- B) F=maF=maF=ma
- Γ) pV=constpV = constpV=const
- 9. Коэффициент полезного действия идеального теплового двигателя Карно зависит от:
- А) теплотворной способности топлива
- Б) разности давлений
- В) температуры нагревателя и холодильника
- Г) объёма газа
- 10. При фазовом переходе первого рода (например, плавлении):
- А) температура изменяется
- Б) внутренняя энергия не меняется

- В) происходит изменение агрегатного состояния
- Г) энтропия не меняется

Ключи к тесту

No	Правильный
вопроса	ответ
1	Б
2	В
3	A
4	Б
5	В
6	Γ
7	Γ
8	A
9	В
10	В

4.6. Перечень экзаменационных вопросов

- 1. Состояние системы. Процессы
- 2. Первое начало термодинамики
- 3. Теплоемкость идеального газа
- 4. Политропические процессы
- 5. Молекулярно-кинетическая теория
- 6. Гипотеза о равнораспределении энергии по степеням свободы
- 7. Газ Ван-дер-Ваальса
- 8. Вероятность. Средние значения
- 9. Распределение Максвелла
- 10. Опытная проверка распределения Максвелла
- 11. Распределение Больцмана
- 12. Второе начало термодинамики
- 13. Энтропия
- 14. О вычислении и применении энтропии
- 15. Статистический смысл второго начала термодинамики
- 16. Энтропия и вероятность
- 17. Термодинамические соотношения
- 18. Квантовые статистики
- 19. Распределение Ферми-Дирака для электронов в металлах
- 20. О зонной теории. Электропроводность
- 21. Распределение Бозе-Эйнштейна для фотонного газа

- 22. Теплоемкость твердого тела
- 23. Изотермы Ван-дер-Ваальса
- 24. Фазовые переходы
- 25. Жидкое состояние
- 26. Кристаллическое состояние
- 27. Плазма
- 28. Инверсная среда. Лазеры
- 29. Явления переноса
- 30. Молекулярно-кинетическая интерпретация явлений переноса
 - 4.7. Образцы экзаменационных билетов

<u>ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ</u> Кафедра общей физики и квантовых наноструктур

Направление: Конструирование и технология электронных средств Дисциплина: Физика Макросистем (бакалавриат III-ий курс, I-ый семестр)

Экзаменационный билет № **

- 1. Второе начало термодинамики
- 2. Изотермы Ван-дер-Ваальса
- 3. Задача. В закрытом сосуде объёмом V=10 л находится n=0,5 моль одноатомного идеального газа при температуре T1=300 К. Газ медленно нагревают при постоянном объёме до температуры T2=600 К. Определить изменение внутренней энергии газа, количество теплоты, переданное газу, работу, совершённую газом, изменение энтропии газа при нагревании, а также обсудить обратимость данного процесса.

Зав. кафедройОФКН	Д.Б. Айрапетян	
20г.		