ГОУ ВПО Российско-Армянский (Славянский) университет

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

Наименование дисциплины: Б1.О.21 Квантовая и оптическая электроника

Автор (ы) <u>д.ф.-м.н., проффесор Агаронян Камо Гамлетович</u> Ф.И.О, ученое звание (при наличии), ученая степень (при наличии)

Направление подготовки: 11.03.04 Электроника и наноэлектроника Наименование образовательной программы: Квантовая информатика

Согласовано:

Заведующий Кафедрой общей физики и квантовых наноструктур

Айрапетян Д.Б.

(подписк)

1. АННОТАЦИЯ

1.1. Краткое описание содержания данной дисциплины;

Дисциплина «Квантовая и оптическая электроника» охватывает фундаментальные принципы и прикладные аспекты взаимодействия света с веществом на квантовом уровне, лежащие в основе работы современных оптоэлектронных устройств. В курсе рассматриваются квантово-механические основы излучения и поглощения света, теория двухуровневых систем, свойства и характеристики лазеров, нелинейные оптические эффекты, а также элементы и устройства оптической электроники.

Особое внимание уделяется процессам генерации, усиления и управления когерентным излучением, включая принципы работы полупроводниковых и твердотельных лазеров, оптических усилителей и фотодетекторов. Изучаются ключевые компоненты оптических систем: модуляторы, интерферометры, волноводы, а также основы интегральной фотоники и применения квантовых явлений в современных технологиях связи, обработки информации и сенсорах.

Курс формирует у студентов базу знаний, необходимую для работы в области фотоники, лазерной техники, телекоммуникаций и квантовых технологий.

- **1.2.** Трудоемкость в академических кредитах и часах, формы итогового контроля (экзамен/зачет);
 - 3 академических кредита / 108 часа. Форма итогового контроля зачет.
- **1.3.** Взаимосвязь дисциплины с другими дисциплинами учебного плана специальности (направления)

"Оптика", "Нанотехнологии", "Квантовая механика"

1.4. Результаты освоения программы дисциплины:

Код компетенции (в соответствии рабочим с учебным планом)	Наименование компетенции (в соответствии рабочим с учебным планом)	Код индикатора достижения компетенций (в соответствии рабочим с учебным планом)	Наименование индикатора достижений компетенций (в соответствии рабочим с учебным планом)
---	--	---	--

УК-1	Способен осуществлять поиск,	УК-1.1	Знает системные связи и
	критический анализ и синтез		отношения между
	информации, применять системный		явлениями, процессами и
	подход для решения поставленных		объектами. Знает
	задач		методы поиска информации,
			ее системного и
			критического анализа"
		УК-1.2	Умеет применять методы
			поиска информации из
			разных источников и
			осуществлять ее критический
			анализ и синтез; применять
			системный подход для
			решения поставленных задач
		УК-1.3	Владеет методами поиска,
			критического анализа и
			синтеза информации и
			методикой системного
			подхода для решения
			поставленных задач
ПК-1	Готов формулировать цели и задачи	ПК-1.1	Знает принципы построения
	научных исследований в соответствии		и фукнционирования
	с тенденциями и перспективами		изделий микро- и
	развития электроники и		наноэлектроникиц
	наноэлектроники, а также смежных	ПК-1.2	Умеет рассчитывать
	областей науки и техники,		предельно-допустимые и
	способностью обоснованно выбирать		предельные режимы работы
	теоретические и экспериментальные		изделий микро- и
	методы и средства решения		наноэлектроникиц
	сформулированных задач	ПК-1.3	Владеет навыками выбора
			теоретических и
			экспериментальных методов

	исследования	изделий
	микро- и наноэлектр	оники

2. УЧЕБНАЯ ПРОГРАММА

2.1. Цели и задачи дисциплины

Цель: Формирование у студентов системного понимания физических принципов, лежащих в основе работы квантовых и оптоэлектронных устройств, а также освоение теоретических и прикладных методов анализа, моделирования и проектирования элементов оптической электроники и фотонных систем.

Задачи:

- Изучить основы квантовой теории взаимодействия излучения с веществом, включая процессы поглощения, вынужденного и спонтанного излучения.
- Освоить модель двухуровневой системы и её применение для описания лазерной генерации и оптической накачки.
- Ознакомиться с принципами работы и конструкцией различных типов лазеров (газовых, твердотельных, полупроводниковых).
- Изучить методы модуляции, детектирования и усиления оптических сигналов.
- Раскрыть физику нелинейных оптических эффектов и их применение в современных оптоэлектронных устройствах.
- Рассмотреть принципы построения и функционирования элементов интегральной оптики и фотонных интегральных схем.
- Развить практические навыки анализа и расчёта характеристик квантовых и оптических электронных устройств.
- Подготовить студентов к самостоятельной исследовательской деятельности в области фотоники, квантовой электроники и современных информационно-коммуникационных технологий.
- **2.2.** Трудоемкость дисциплины и виды учебной работы (в академических часах и зачетных единицах) (удалить строки, которые не будут применены в рамках дисциплины)

Виды учебной работы	Всего, в акад. часах	Распределение по семестрам 1 сем		
1	2	3		
1.Общая трудоемкость изучения дисциплины по семестрам, в т. ч.:	108	108		
1.1. Аудиторные занятия, в т. ч.:	64	64		
1.1.1.Лекции	32	32		
1.1.2.Практические занятия, в т. ч.	-	-		
1.1.3.Лабораторные работы	32	32		
1.2. Самостоятельная работа, в т. ч.:	44	44		
1.3. Консультации				
Итоговый контроль (Экзамен, Зачет, диф. зачет - указать)	зачет			

2.3. Содержание дисциплины

2.3.1. Тематический план и трудоемкость аудиторных занятий (модули, разделы дисциплины и виды занятий) по рабочему учебному плану

Разделы и темы дисциплины	Всего (ак. часов)	Лекции (ак. часов)	Лабор. (ак. часов)
1	2=3+4+5+6 +7	3	6
Тема 1. Основы фотоники и волноводной оптики	16	8	8
Тема 2. Компоненты фотонных интегральных схем	12	6	6
Тема 3. Материалы и технологии изготовления ФИС	12	6	6
Тема 4. Проектирование и моделирование ФИС	12	6	6
Тема 5. Применения и перспективы ФИС	12	6	6
ИТОГО	64	32	32

2.3.2. Краткое содержание разделов дисциплины в виде тематического плана

Тема 1. Введение в квантовую и оптическую электронику

Обзор развития оптической и квантовой электроники, основные понятия: фотон,

когерентность, оптические процессы. Значение дисциплины для современных технологий.

Тема 2. Квантовая теория взаимодействия света с веществом

Поглощение, спонтанное и вынужденное излучение. Двухуровневая модель. Уравнения Эйнштейна. Принцип действия квантовых оптических систем.

Тема 3. Принципы работы лазеров и оптических резонаторов

Условия генерации лазерного излучения. Инверсия населённостей. Роль оптического резонатора. Типы накачки и характеристики лазеров.

Тема 4. Полупроводниковые лазеры и светодиоды

Физика полупроводниковых переходов. Энергетические диаграммы. Излучение в p-n переходе. Конструкция и параметры лазеров и LED.

Тема 5. Оптические усилители и модуляторы

Принципы усиления оптических сигналов. Работа электро- и акустооптических модуляторов. Использование в системах передачи информации.

Тема 6. Основы нелинейной оптики

Нелинейные отклики среды: генерация гармоник, эффект Керра, самофокусировка. Их применение в усилении и преобразовании частот.

Тема 7. Фотодетекторы и принципы регистрации излучения

Фотоэффект. Полупроводниковые фотодиоды и фотоприёмники. Спектральная чувствительность и временные характеристики.

Тема 8. Элементы интегральной фотоники и фотонные интегральные схемы

Волноводы, разветвители, резонаторы. Основы фотонной интеграции на чипе. Преимущества фотонных схем.

Тема 9. Квантовые эффекты в оптоэлектронике

Квантовые точки, однопотонные источники, основы квантовой криптографии и фотонных квантовых коммуникаций.

Тема 10. Применения квантовой и оптической электроники

Реальные применения: оптические коммуникации, лазерные системы, биофотоника, интеграция с CMOS-технологиями и квантовые технологии будущего.

2.3.3. Краткое содержание семинарских/практических занятий/лабораторного практикума

Исследование зависимости интенсивности лазерного излучения от параметров накачки

- Ознакомление с принципами работы лазера.
- Экспериментальное определение порога генерации и построение зависимости выходной мощности от тока накачки.

Измерение длины когерентности и ширины спектра лазерного излучения

- Применение интерферометра Майкельсона.
- Анализ когерентных свойств источника.

Исследование дифракции и интерференции лазерного излучения

- Работа с дифракционной решёткой и двойной щелью.
- Измерение углов дифракции и определение длины волны.

Определение параметров полупроводникового лазера

- Измерение спектра излучения.
- Температурные зависимости и энергетическая диаграмма.

Исследование характеристик фотодиодов и фотоприемников

- Вольт-амперные характеристики.
- Зависимость фототока от интенсивности падающего излучения.

Модуляция лазерного излучения

- Амплитудная и частотная модуляция.
- Использование электрооптических и акустооптических модуляторов.

Наблюдение нелинейных оптических эффектов

- Генерация второй гармоники (SHG).
- Зависимость эффективности преобразования от мощности входного излучения.

Измерение спектра поглощения и излучения квантовых точек (опционно)

- Работа с коллоидными нанокристаллами.
- Определение ширины запрещённой зоны по спектру.

Исследование световодов и волноводных структур

- Ввод излучения в волновод.
- Измерение потерь и распределения интенсивности.

2.3.4. Материально-техническое обеспечение дисциплины

Аудитория и учебная лаборатория для проведения лабораторных занятий

2.4. Модульная структура дисциплины с распределением весов по формам контролей

Формы контролей	Вес формы (форм) текущего контроля в результирую щей оценке текущего контроля (по модулям)	Вес формы промежуточно го контроля в итоговой оценке промежуточно го контроля	Вес итоговой оценки промежуточно го контроля в результирую щей оценке промежуточных контролей	Вес итоговой оценки промежуточног о контроля в результирующе й оценке промежуточных контролей (семестровой оценке)	Веса результирующей оценки промежуточных контролей и оценки итогового контроля в результирующей оценке итогового контроля
-----------------	---	---	---	--	---

Вид учебной работы/контроля	M1 ¹	M2	M1	M2	M1	M2		
Контрольная работа (при наличии)			0.5	0.5				
Устный опрос (при наличии)								
Лабораторные работы (при наличии)	0.5	0.5						
Письменные домашние задания (при								
наличии)								
Решение задач	0.5	0.5						
Веса результирующих оценок текущих					0.5	0.5		
контролей в итоговых оценках								
промежуточных контролей								
Веса оценок промежуточных контролей в								
итоговых оценках промежуточных								
контролей								
Вес итоговой оценки 1-го							0.5	
промежуточного контроля в								
результирующей оценке промежуточных								
контролей								
Вес итоговой оценки 2-го							0.5	
промежуточного контроля в								
результирующей оценке промежуточных								
контролей								
Вес результирующей оценки								0.5
промежуточных контролей в								
результирующей оценке итогового								
контроля								0.7
Вес итогового контроля								0.5
(Экзамен/зачет) в результирующей								
оценке итогового контроля							57 4	
	$\sum = 1$	$\sum =$ 1	$\sum = 1$					

3. Теоретический блок (указываются материалы, необходимые для освоения учебной программы дисциплины)

- 3.1. Материалы по теоретической части курса
 - 3.1.1. Учебник(и);
 - 1. Сивухин Д.В. Общий курс физики. Том 4: Оптика. М.: Физматлит, 2004.
 - 2. Герлах В., Штельмах Х. Квантовая электроника. М.: Мир, 1983.
 - 3. **Яровой Ю.Г.** *Квантовая электроника и лазерная техника.* М.: Радио и связь, 1990.
 - 4. **Saleh B.E.A., Teich M.C.** *Fundamentals of Photonics.* Wiley, 2019.
 - 5. **Svelto O.** *Principles of Lasers.* Springer, 2010.
 - 6. Fox M. Quantum Optics: An Introduction. Oxford University Press, 2006.
 - 7. **Haus H.A.** *Electromagnetic Noise and Quantum Optical Measurements.* Springer, 2000.

_

¹ Учебный Модуль

- 4. Фонды оценочных средств (указываются материалы, необходимые для проверки уровня знаний в соответствии с содержанием учебной программы дисциплины).
 - 4.1. Планы лабораторных работ и практикумов
- ✓ Исследование порога генерации лазера
- ✓ Интерференция и когерентность лазерного излучения
- ✓ Дифракция лазерного излучения на щелях и решетках
- ✓ Изучение параметров полупроводникового лазера
- ✓ Исследование характеристик фотодиодов и фотоприемников
- ✓ Модуляция лазерного излучения (амплитудная и частотная)
- ✓ Наблюдение нелинейных оптических эффектов (генерация второй гармоники)
- ✓ Измерение спектра поглощения и излучения квантовых точек
- ✓ Работа с оптическими волноводами и измерение потерь
 - 4.2. Вопросы и задания для самостоятельной работы студентов
 - о Сформулируйте условия возникновения вынужденного излучения и его отличие от спонтанного.
 - о Объясните принцип работы двухуровневой квантовой системы.
 - о Какие физические условия необходимы для генерации лазерного излучения?
 - о В чем состоят особенности работы полупроводникового лазера по сравнению с газовым?
 - о Объясните, что такое когерентность и как она измеряется.
 - о Перечислите основные нелинейные оптические эффекты и области их применения.
 - о Что такое генерация второй гармоники?
 - о Какие существуют типы модуляторов оптического излучения?
 - о Как работают фотодиоды и какие параметры их характеризуют?
 - о Что такое волновод и как он применяется в интегральной фотонике?
 - **4.3.** Образцы вариантов контрольных работ, тестов и/или других форм текущих и промежуточных контролей
 - ✓ Построить энергетическую диаграмму для двухуровневой системы и объяснить переходы между уровнями.
 - ✓ Рассчитать длину когерентности лазера с заданной шириной спектра.

- ✓ Смоделировать схему модуляции лазерного сигнала с помощью электрооптического модулятора.
- ✓ Подготовить сравнительную таблицу параметров различных типов лазеров (газовый, твердотельный, полупроводниковый).
- ✓ Проанализировать экспериментальные зависимости "мощность излучения ток накачки" и определить порог генерации.
- ✓ Найти и описать пример применения квантовых точек в современной оптоэлектронике.
- ✓ Рассчитать длину волны при дифракции лазерного пучка на решетке с известным шагом.
- ✓ Подготовить краткий реферат на тему: «Применение фотонных интегральных схем в телекоммуникациях».
- ✓ Изучить и описать метод генерации одиночных фотонов и их роль в квантовой криптографии.
- ✓ Рассчитать углы дифракции и интерференции для стандартной двухщелевой схемы при заданной длине волны.

4.4. Перечень экзаменационных вопросов

- 1. Принцип действия лазера. Условия инверсии населённостей.
- 2. Спонтанное и вынужденное излучение: физический смысл и уравнения Эйнштейна.
- 3. Квантовая модель двухуровневой системы и её применение в оптической электронике.
- 4. Оптический резонатор: типы, назначение и характеристики.
- 5. Полупроводниковые лазеры: структура, принцип работы, особенности.
- 6. Принцип работы светодиода (LED) и отличие от лазера.
- 7. Методы модуляции оптического излучения (амплитудная, частотная, фазовая).
- 8. Электрооптические и акустооптические модуляторы: устройство и принцип действия.
- 9. Нелинейные оптические эффекты: генерация второй гармоники, эффект Керра.
- 10. Фотоэффект и работа полупроводниковых фотодетекторов.
- 11. Когерентность лазерного излучения: временная и пространственная.
- 12. Интерференция и дифракция света: примеры и практическое применение.
- 13. Волноводы и принципы работы фотонных интегральных схем.
- 14. Основы квантовой оптики: однопотонные источники, квантовая криптография.
- 15. Применения оптической электроники в телекоммуникациях и сенсорике.

4.5. Образцы экзаменационных билетов

ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ

Кафедра общей физики и квантовых наноструктур

Направление: Электроника и наноэлектроника Дисциплина: Квантовая и оптическая электроника (бакалавриат IV-ый курс, I-ый семестр)

Экзаменационный билет № **

- 1. Полупроводниковые лазеры: структура, принцип работы, особенности.
- 2. Фотоэффект и работа полупроводниковых фотодетекторов.
- 3. Основы квантовой оптики: однопотонные источники, квантовая криптография.

Зав. кафедройОФКН	_Д.Б. Айрапетян
20г.	