ГОУ ВПО Российско-Армянский (Славянский) университет

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ

Наименование дисциплины: Б1.В.02 Спектроскопия

Автор (ы) <u>к.ф.-м.н. Овсепян Рубен Константинович</u> Ф.И.О, ученое звание (при наличии), ученая степень (при наличии)

Направление подготовки: 11.04.04 Электроника и наноэлектроника Наименование образовательной программы: Квантовая и оптическая электроника

Согласовано:

Заведующий Кафедрой общей физики и квантовых наноструктур

Айрапетян Д.Б.

1. АННОТАЦИЯ

1.1. Краткое описание содержания данной дисциплины;

Дисциплина «Спектроскопия» охватывает основные принципы, методы и области применения спектрального анализа для исследования структуры вещества и физических процессов. В рамках курса изучаются фундаментальные аспекты взаимодействия электромагнитного излучения с веществом, включая механизмы поглощения, излучения и рассеяния света. Особое внимание уделяется атомной, молекулярной, электронной и ядерной спектроскопии, а также современным спектральным методам: инфракрасной (ИК), ультрафиолетовой (УФ), оптической, Раман-спектроскопии, ЯМР и ЭПР.

Курс также включает изучение приборной базы, методов регистрации спектров, интерпретации полученных данных и применения спектроскопии в физике, химии, биологии, материаловедении и нанотехнологиях. Осваиваются как теоретические основы, так и практические навыки анализа спектров, что делает дисциплину важным элементом подготовки специалистов в области естественных наук.

- **1.2.** Трудоемкость в академических кредитах и часах, формы итогового контроля (экзамен/зачет);
 - 4 академических кредита / 144 часа. Форма итогового контроля экзамен.

1.3. Результаты освоения программы дисциплины:

Код компетенции (в соответствии рабочим с учебным планом)	Наименование компетенции (в соответствии рабочим с учебным планом)	Код индикатора достижения компетенций (в соответствии рабочим с учебным планом)	Наименование индикатора достижений компетенций (в соответствии рабочим с учебным планом)
УК-3	Способен организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели	УК-3.1	Знает способы разработки целей команды в соответствии с целями проекта и методы формирования состава

			команды, определение
			функциональных и ролевых
		УК-3.2	Умеет разрабатывать и
			корректировать план работы
			команды; выбирать правила
			командной работы как
			основы межличностного
			взаимодействия.
		УК-3.3	Владеет методами выбора
			способов мотивации членов
			команды с учетом
			организационных
			возможностей и личностных
			особенностей членов
			команды; владеет навыками
			оценки эффективности
			работы команды по достигнутому результату.
ПК-1	Готов формулировать цели и задачи	ПК-1.1	Знает принципы построения
	научных исследований в соответствии		и фукнционирования
	с тенденциями и перспективами		изделий микро- и
	развития электроники и		наноэлектроники
	наноэлектроники, а также смежных		
	областей науки и техники,	ПК-1.2	Умеет рассчитывать
	способностью обоснованно выбирать		предельно-допустимые и
	теоретические и экспериментальные		предельные режимы работы
	методы и средства решения		изделий микро- и
	сформулированных задач		наноэлектроники

	ПК-1.3	Владеет	навыками	выбора
		теоретиче	еских	И
		эксперим	ентальных	методов
		исследова	ания	изделий
		микро- и	наноэлектр	оники

2. УЧЕБНАЯ ПРОГРАММА

2.1. Цели и задачи дисциплины

Цель дисциплины:

Целью дисциплины является формирование у студентов теоретических знаний и практических навыков в области спектроскопических методов исследования, позволяющих анализировать структуру, состав и свойства веществ на атомном и молекулярном уровнях. Курс направлен на освоение физических основ спектроскопии, принципов взаимодействия излучения с веществом, а также на применение современных спектральных методов в научных и прикладных исследованиях в физике, химии, материаловедении и смежных областях.

Задачи дисциплины:

Задачами дисциплины «Спектроскопия» являются изучение физических основ взаимодействия электромагнитного излучения с веществом, ознакомление с основными видами спектроскопии (атомной, молекулярной, ИК, УФ, Раман, ЯМР, ЭПР), освоение методов регистрации, обработки и интерпретации спектров, а также формирование у студентов практических навыков применения спектроскопических методов в научных исследованиях и технической диагностике. Курс направлен на развитие умений работать с современным оборудованием, проводить спектральный анализ и интерпретировать полученные данные для решения фундаментальных и прикладных задач.

2.2. Трудоемкость дисциплины и виды учебной работы (в академических часах и зачетных единицах) (удалить строки, которые не будут применены в рамках дисциплины)

Виды учебной работы	Всего, в акад. часах	Распределение по семестрам 1 сем		
1	2	3		
1.Общая трудоемкость изучения дисциплины по семестрам, в т. ч.:	144	144		
1.1. Аудиторные занятия, в т. ч.:	32	32		
1.1.1.Лекции	16	16		
1.1.2.Практические занятия, в т. ч.	16	16		
1.1.3.Лабораторные работы				
1.2. Самостоятельная работа, в т. ч.:	76	76		
1.3. Консультации				
Итоговый контроль (Экзамен, Зачет, диф. зачет - указать)	Экзамен 36	Экзамен 36		

2.3. Содержание дисциплины

2.3.1. Тематический план и трудоемкость аудиторных занятий (модули, разделы дисциплины и виды занятий) по рабочему учебному плану

Разделы и темы дисциплины	Всего (ак. часов)	Лекции (ак. часов)	Практ. Занятия (ак. часов)
1	2=3+4+5+6 +7	3	4
Тема 1. Основы фотоники и волноводной оптики	8	4	4
Тема 2. Компоненты фотонных интегральных схем	6	3	3
Тема 3. Материалы и технологии изготовления ФИС	6	3	3
Тема 4. Проектирование и моделирование ФИС	6	3	3
Тема 5. Применения и перспективы ФИС	6	3	3
ИТОГО	32	16	16

2.3.2. Краткое содержание разделов дисциплины в виде тематического плана

Тема 1. Введение в спектроскопию

Общие сведения о спектроскопии, классификация методов, история развития, значение в науке и технике.

Тема 2. Взаимодействие излучения с веществом

Физические основы: поглощение, испускание, рассеяние, переходы между энергетическими уровнями.

Тема 3. Атомная спектроскопия

Строение атомных спектров, правила отбора, спектры поглощения и испускания, спектральные серии.

Тема 4. Молекулярная спектроскопия

Колебательные и вращательные спектры, спектры в ИК- и Раман-областях, особенности спектров полидиатомических молекул.

Тема 5. Электронная спектроскопия

УФ и видимая спектроскопия, электронные переходы, спектры поглощения и люминесценции.

Тема 6. ЯМР-спектроскопия (ядерный магнитный резонанс)

Принципы ЯМР, химический сдвиг, спин-спиновые взаимодействия, применение в химии и биофизике.

Тема 7. ЭПР-спектроскопия (электронный парамагнитный резонанс)

Основы ЭПР, параметры спектра, анализ радикалов и переходных металлов.

Тема 8. Методы регистрации спектров и спектральная аппаратура

Современные приборы, типы спектрометров, спектральное разрешение, детекторы.

Тема 9. Обработка и интерпретация спектров

Методы математической обработки, калибровка, извлечение информации о структуре вещества.

Тема 10. Применение спектроскопии в науке и технике

Аналитическая химия, физика конденсированных сред, биомедицина, нанотехнологии.

2.3.3. Краткое содержание практических занятий

Знакомство с основами спектральной аппаратуры

Изучение устройства спектрометров, калибровка прибора, настройка оптических элементов.

Регистрация спектра поглощения видимого света

Определение длины волны максимального поглощения для различных красителей и растворов.

Анализ ИК-спектров органических соединений

Определение функциональных групп на основе характерных полос поглощения.

Раман-спектроскопия твердых тел

Регистрация и интерпретация спектров рассеяния, определение колебательных мод.

Спектроскопия люминесценции

Исследование свечения люминофоров и анализ факторов, влияющих на интенсивность и сдвиг полос.

Определение энергетических уровней по УФ-спектрам

Анализ электронных переходов в органических молекулах, построение энергетических диаграмм.

Изучение спектров ЯМР

Определение химических сдвигов, интерпретация ЯМР-спектров простых органических соединений.

ЭПР-спектроскопия парамагнитных соединений

Регистрация спектров и определение g-фактора, анализ параметров спектра.

Изучение спектральных сдвигов под воздействием среды

Сравнение спектров одного и того же вещества в разных растворителях.

Обработка и интерпретация экспериментальных спектров

Применение программного обеспечения для анализа спектральных данных, построение графиков и выводов.

2.3.4. Материально-техническое обеспечение дисциплины

• Аудитория для проведения практических занятий

2.4. Модульная структура дисциплины с распределением весов по формам контролей

Формы контролей	Вес формы (форм) текущего контроля в результирую щей оценке текущего контроля (по модулям)		Вес формы промежуточно го контроля в итоговой оценке промежуточно го контроля		Вес итоговой оценки промежуточно го контроля в результирую щей оценке промежуточных контролей		Вес итоговой оценки промежуточног о контроля в результирующе й оценке промежуточных контролей (семестровой оценке)	Веса результирующей оценки промежугочных контролей и оценки итогового контроля в результирующей оценке итогового контроля
Вид учебной работы/контроля	$M1^1$	M2	M1	M2	M1	M2		
Контрольная работа (при наличии)			0.5	0.5				
Устный опрос (при наличии)								
Лабораторные работы (при наличии)	0.5	0.5						
Письменные домашние задания (при наличии)								
Решение задач	0.5	0.5						

¹ Учебный Модуль

Веса результирующих оценок текущих контролей в итоговых оценках промежуточных контролей					0.5	0.5		
Веса оценок промежуточных контролей в итоговых оценках промежуточных контролей								
Вес итоговой оценки 1-го промежуточного контроля в результирующей оценке промежуточных контролей							0.5	
Вес итоговой оценки 2-го промежуточного контроля в результирующей оценке промежуточных контролей							0.5	
Вес результирующей оценки промежуточных контролей в результирующей оценке итогового контроля								0.5
Вес итогового контроля (Экзамен/зачет) в результирующей оценке итогового контроля								0.5
	$\sum = 1$	$\sum =$ 1	$\sum = 1$	$\sum = 1$	$\sum = 1$	$\sum = 1$	∑ = 1	∑ = 1

- 3. Теоретический блок (указываются материалы, необходимые для освоения учебной программы дисциплины)
 - 3.1. Материалы по теоретической части курса
 - 3.1.1. Учебник(и);

Кузьмин М. Д. Основы спектроскопии. — М.: Физматлит, 2006.

Гладков А. Л. Спектроскопия: Учебник для вузов. — М.: Высшая школа, 2004.

Немцов Б.Е., Колесников А.А. *Молекулярная спектроскопия.* — М.: Наука, 2002.

Титов В. А. Спектроскопия: Теория и практика. — СПб.: Лань, 2018.

Сигбан К. Спектроскопия: Введение в методы и их применения. — М.: Мир, 1985.

- 4. Фонды оценочных средств (указываются материалы, необходимые для проверки уровня знаний в соответствии с содержанием учебной программы дисциплины).
 - 4.1. Планы практических занятий

Практическое занятие 1. Введение в спектроскопию

- Цель: освоить базовые понятия спектроскопии, классификацию методов и области применения.
- Основные вопросы:
 - о Определение спектроскопии, виды спектров.
 - о История развития и ключевые открытия.
- Задания:
 - о Составить сравнительную таблицу методов спектроскопии.
 - о Подготовить краткий доклад (5 мин) о вкладе спектроскопии в развитие квантовой физики.

Практическое занятие 2. Взаимодействие излучения с веществом

- Цель: изучить физические механизмы взаимодействия излучения с веществом.
- Основные вопросы:
 - о Поглощение, испускание, рассеяние света.
 - о Переходы между энергетическими уровнями.
- Задания:
 - о Рассчитать энергии фотонов для видимой и УФ-областей.
 - о Обсудить примеры переходов в атомах и молекулах.

Практическое занятие 3. Атомная спектроскопия

- Цель: изучение атомных спектров и правил отбора.
- Основные вопросы:
 - о Строение спектров, спектральные серии водорода.
 - о Спектры поглощения и испускания.
- Залания:
 - о Построить энергетические уровни атома водорода и указать возможные переходы.
 - о Рассчитать длины волн для серии Бальмера.

Практическое занятие 4. Молекулярная спектроскопия

- Цель: изучить колебательные и вращательные спектры.
- Основные вопросы:
 - о Основы ИК- и Раман-спектроскопии.
 - о Особенности спектров полидиатомических молекул.
- Задания:
 - Рассчитать колебательную частоту для заданной молекулы (CO, HCl).
 - о Составить таблицу сравнительных характеристик ИК и Раман-спектров.

Практическое занятие 5. Электронная спектроскопия

- Цель: изучение УФ и видимой спектроскопии.
- Основные вопросы:
 - о Электронные переходы и их энергетические диапазоны.
 - о Спектры поглощения и люминесценции.
- Задания:
 - о Снять спектр поглощения раствора красителя с помощью лабораторного спектрометра.
 - о Проанализировать спектр и определить максимум поглощения.

Практическое занятие 6. ЯМР-спектроскопия

- Цель: освоить основы ЯМР-спектроскопии.
- Основные вопросы:
 - о Принцип резонанса, химический сдвиг.

- Спин-спиновые взаимодействия.
- Задания:
 - о Рассчитать резонансную частоту для ядра водорода в магнитном поле 7 Тл.
 - о Проанализировать пример ЯМР-спектра этанола.

Практическое занятие 7. ЭПР-спектроскопия

- Цель: познакомиться с основами ЭПР и её применением.
- Основные вопросы:
 - о Принципы ЭПР, параметры спектров.
 - о Анализ радикалов и ионов переходных металлов.
- Задания:
 - о Рассчитать положение линии ЭПР для g=2 при поле 0,34 Тл.
 - о Привести примеры соединений, анализируемых методом ЭПР.

Практическое занятие 8. Методы регистрации спектров и аппаратура

- Цель: изучить устройства и приборы для спектроскопии.
- Основные вопросы:
 - о Типы спектрометров, разрешение, детекторы.
 - о Современные методы регистрации спектров.
- Задания:
 - о Нарисовать схему простейшего спектрометра.
 - о Составить таблицу сравнения ПЗС-детекторов и фотодиодов.

Практическое занятие 9. Обработка и интерпретация спектров

- Цель: овладеть навыками обработки спектров.
- Основные вопросы:
 - о Математическая обработка, калибровка.
 - о Извлечение информации о структуре вещества.
- Задания:
 - о Провести калибровку спектра по известным линиям.
 - о Определить состав вещества по предоставленному спектру.

Практическое занятие 10. Применение спектроскопии в науке и технике

- Цель: рассмотреть практическое использование спектроскопии.
- Основные вопросы:
 - о Применение в аналитической химии, биомедицине, нанотехнологиях.
 - о Примеры реальных исследований.
- Задания:
 - о Подготовить мини-доклад: «Использование спектроскопии для анализа воздуха/воды».
 - о Составить схему использования спектроскопии для идентификации материалов.

4.2. Вопросы и задания для самостоятельной работы студентов

- ✓ Что такое спектроскопия и какие основные её виды существуют?
- ✓ Объясните механизм взаимодействия электромагнитного излучения с веществом.
- ✓ В чём различие между атомной и молекулярной спектроскопией?
- ✓ Какие законы лежат в основе инфракрасной спектроскопии?
- ✓ Что такое правила отбора и как они влияют на спектральные переходы?
- ✓ Объясните физические основы ЯМР-спектроскопии.

- √ Каковы особенности спектров Рамановского рассеяния?
- ✓ Как влияет растворитель на положение спектральных полос?
- ✓ Чем различаются УФ/Видимая и ИК спектроскопия?
- ✓ Какие параметры можно определить из ЭПР-спектра?
- **4.3.** Образцы вариантов контрольных работ, тестов и/или других форм текущих и промежуточных контролей

Контрольная работа (Вариант 1)

Часть 1. Теоретические вопросы:

- 1. Классификация спектроскопических методов.
- 2. Принцип действия УФ-видимой спектроскопии.
- 3. Объясните механизм ИК-поглощения молекулами.
- 4. Правила отбора в спектроскопии Рамана.

Часть 2. Задачи:

- 1. Рассчитайте энергию фотона с длиной волны 500 нм.
- 2. Постройте схему уровней и возможные переходы для двухатомной молекулы в ИКдиапазоне.

Контрольная работа (Вариант 2)

Часть 1. Теоретические вопросы:

- 1. Принцип работы ЯМР-спектроскопии.
- 2. Сравнение ИК- и Раман-спектроскопии.
- 3. Влияние растворителя на спектральные характеристики.

Часть 2. Задачи:

- 1. Определите, к какому типу перехода относится максимум поглощения на 280 нм.
- 2. Проанализируйте спектр и укажите возможные функциональные группы.

Пример теста (множественный выбор)

1. В каком диапазоне работает ИК-спектроскопия?

- А) 200-400 нм
- В) 400-700 нм
- C) 2.5–25 мкм
- D) 1-10 cm⁻¹

2. Что регистрирует Раман-спектроскопия?

- А) Поглощение ИК-излучения
- В) Эмиссию фотонов
- С) Неупругое рассеяние света
- D) Поглощение в ультрафиолетовой области

3. Уравнение Бугера-Ламберта-Бера связывает:

- А) интенсивность света с длиной волны
- В) поглощение с концентрацией вещества
- С) спектральную ширину с временем
- D) массу с плотностью

4.4. Перечень экзаменационных вопросов

- 1. Понятие и классификация спектроскопических методов.
- 2. Основы взаимодействия излучения с веществом.
- 3. Электромагнитный спектр и его разделение по диапазонам.
- 4. УФ/Видимая спектроскопия: физические основы, типы переходов (π - π *, n- π *).
- 5. Закон Бугера-Ламберта-Бера: вывод и применение.
- 6. Инфракрасная (ИК) спектроскопия: колебательные и вращательные переходы.
- 7. Правила отбора в ИК-спектроскопии.
- 8. Спектроскопия комбинационного (Рамановского) рассеяния: принципы и применение.
- 9. Сравнение ИК и Раман-спектроскопии.
- 10. ЯМР-спектроскопия: принципы, химический сдвиг, спин-спиновое взаимодействие.
- 11. Спектроскопия электронной парамагнитной резонанс (ЭПР): суть метода и примеры.
- 12. Применение спектроскопических методов в химии, биологии и материаловедении.
- 13. Влияние растворителя и агрегатного состояния вещества на спектры.
- 14. Основные виды детекторов в спектроскопии.
- 15. Спектроскопическое определение функциональных групп в органических соединениях.
- 16. Влияние симметрии молекулы на спектральные переходы.
- 17. Современные приборы и программное обеспечение для спектрального анализа.
- 18. Квантово-механическое описание переходов в молекулах.
- 19. Примеры интерпретации экспериментальных спектров.
- 20. Спектроскопические методы в нанотехнологиях и медицине.

4.5. Образцы экзаменационных билетов

<u>ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ</u> Кафедра общей физики и квантовых наноструктур

Направление: Электроника и наноэлектроника Дисциплина: Спектроскопия (магистратура І-ый курс, П-ой семестр)

Экзаменационный билет № **

- 1. Закон Бугера-Ламберта-Бера: вывод и применение.
- 2. ЯМР-спектроскопия: принципы, химический сдвиг, спин-спиновое взаимодействие.
- 3. Квантово-механическое описание переходов в молекулах.

Зав. кафедройОФКН	Д.Б. Айрапетян	
20r.		